Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Materials (Basel) ; 16(8)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2295398

ABSTRACT

Mg-Zn co-dopedGaN powders via the nitridation of a Ga-Mg-Zn metallic solution at 1000 °C for 2 h in ammonia flow were obtained. XRD patterns for the Mg-Zn co-dopedGaN powders showed a crystal size average of 46.88 nm. Scanning electron microscopy micrographs had an irregular shape, with a ribbon-like structure and a length of 8.63 µm. Energy-dispersive spectroscopy showed the incorporation of Zn (Lα 1.012 eV) and Mg (Kα 1.253 eV), while XPS measurements showed the elemental contributions of magnesium and zinc as co-dopant elements quantified in 49.31 eV and 1019.49 eV, respectively. The photoluminescence spectrum showed a fundamental emission located at 3.40 eV(364.70 nm), which was related to band-to-band transition, besides a second emission found in a range from 2.80 eV to 2.90 eV (442.85-427.58 nm), which was related to a characteristic of Mg-doped GaN and Zn-doped GaN powders. Furthermore, Raman scattering demonstrated a shoulder at 648.05 cm-1, which could indicate the incorporation of the Mg and Zn co-dopants atoms into the GaN structure. It is expected that one of the main applications of Mg-Zn co-doped GaN powders is in obtaining thin films for SARS-CoV-2 biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL